Deletion of fibroblast growth factor receptor 2 from the peri-Wolffian duct stroma leads to ureteric induction abnormalities and vesicoureteral reflux

نویسندگان

  • Kenneth A. Walker
  • Sunder Sims-Lucas
  • Valeria E. Di Giovanni
  • Caitlin Schaefer
  • Whitney M. Sunseri
  • Tatiana Novitskaya
  • Mark P. de Caestecker
  • Feng Chen
  • Carlton M. Bates
چکیده

Purpose: Pax3cre-mediated deletion of fibroblast growth factor receptor 2 (Fgfr2) broadly in renal and urinary tract mesenchyme led to ureteric bud (UB) induction defects and vesicoureteral reflux (VUR), although the mechanisms were unclear. Here, we investigated whether Fgfr2 acts specifically in peri-Wolffian duct stroma (ST) to regulate UB induction and development of VUR and the mechanisms of Fgfr2 activity. Methods: We conditionally deleted Fgfr2 in ST (Fgfr2) using Tbx18cre mice. To look for ureteric bud induction defects in young embryos, we assessed length and apoptosis of common nephric ducts (CNDs). We performed 3D reconstructions and histological analyses of urinary tracts of embryos and postnatal mice and cystograms in postnatal mice to test for VUR. We performed in situ hybridization and real-time PCR in young embryos to determine mechanisms underlying UB induction defects. Results: We confirmed that Fgfr2 is expressed in ST and that Fgfr2 was efficiently deleted in this tissue in Fgfr2 mice at embryonic day (E) 10.5. E11.5 Fgfr2 mice had randomized UB induction sites with approximately 1/3 arising too high and 1/3 too low from the Wolffian duct; however, apoptosis was unaltered in E12.5 mutant CNDs. While ureters were histologically normal, E15.5 Fgfr2 mice exhibit improper ureteral insertion sites into the bladder, consistent with the ureteric induction defects. While ureter and bladder histology appeared normal, postnatal day (P) 1 mutants had high rates of VUR versus controls (75% versus 3%, p = 0.001) and occasionally other defects including renal hypoplasia and duplex systems. P1 mutant mice also had improper ureteral bladder insertion sites and shortened intravesicular tunnel lengths that correlated with VUR. E10.5 Fgfr2 mice had decreases in Bmp4 mRNA in stromal tissues, suggesting a mechanism underlying the ureteric induction and VUR phenotypes. Conclusion: Mutations in FGFR2 could possibly cause VUR in humans. Citation: Walker KA, Sims-Lucas S, Di Giovanni VE, Schaefer C, Sunseri WM, et al. (2013) Deletion of Fibroblast Growth Factor Receptor 2 from the Peri-Wolffian Duct Stroma Leads to Ureteric Induction Abnormalities and Vesicoureteral Reflux. PLoS ONE 8(2): e56062. doi:10.1371/journal.pone.0056062 Editor: Junming Yue, The University of Tennessee Health Science Center, United States of America Received November 7, 2012; Accepted January 3, 2013; Published February 7, 2013 Copyright: 2013 Walker et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This study was supported by the National Institute of Diabetes and Digestive and Kidney Diseases Grant 1R01DK081128 (to CMB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] . These authors contributed equally to this work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Deletion of Fibroblast Growth Factor Receptor 2 from the Peri-Wolffian Duct Stroma Leads to Ureteric Induction Abnormalities and Vesicoureteral Reflux

PURPOSE Pax3cre-mediated deletion of fibroblast growth factor receptor 2 (Fgfr2) broadly in renal and urinary tract mesenchyme led to ureteric bud (UB) induction defects and vesicoureteral reflux (VUR), although the mechanisms were unclear. Here, we investigated whether Fgfr2 acts specifically in peri-Wolffian duct stroma (ST) to regulate UB induction and development of VUR and the mechanisms o...

متن کامل

Renal agenesis and hypodysplasia in ret-k2 mutant mice result from defects in ureteric bud development

The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...

متن کامل

Renal agenesis and hypodysplasia in ret-k- mutant mice result from defects in ureteric bud development.

The c-ret gene encodes a receptor tyrosine kinase that is expressed in the Wolffian duct and ureteric bud of the developing excretory system. Newborn mice homozygous for a mutation in c-ret displayed renal agenesis or severe hypodysplasia, suggesting a critical role for this gene in metanephric kidney development. To investigate the embryological basis of these defects, we characterized the ear...

متن کامل

Sall4 Is Transiently Expressed in the Caudal Wolffian Duct and the Ureteric Bud, but Dispensable for Kidney Development

The kidney, the metanephros, is formed by reciprocal interactions between the metanephric mesenchyme and the ureteric bud, the latter of which is derived from the Wolffian duct that elongates in the rostral-to-caudal direction. Sall1 expressed in the metanephric mesenchyme is essential for ureteric bud attraction in kidney development. Sall4, another member of the Sall gene family, is required ...

متن کامل

Distal Renal Tubular Acidosis with Grade 4 Vesicoureteral Reflux in a Child with Single Kidney

  Introduction Renal tubular acidosis (RTA) is a non-uremic defects of urinary acidification. It is characterized by a normal anion gap hyperchloremic  metabolic acidosis; plasma potassium may be normal, low or high-depending on the type of RTA. These syndromes differ from uremic acidosis which is associated with a high anion gap, decreased glomerular filtration with enhanced proton secretion b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015